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In Part I a singularity method was described which is applicable especially to highly 
transient internal flow problems with any three-dimensional geometry including walls 
wetted on both sides. In Part II, this model is integrated into the equation of motion of the 
structure which may be obtained from finite-element methods, for instance. In this way, the 
coupling between fluid and structural dynamics due to common interfaces between fluid 
regions and structural members is taken into account. Equations of motion are obtained 
which simultaneously satisfy the conditions of fluid and structural dynamics. Since these 
equations are of the same type and have the same dimensions as those describing the 
structural dynamics, the solution of the coupled problem can be obtained by well-known 
techniques, such as the method of modal superposition which will be applied here. Results 
are presented for two examples. The second, more practical one deals with vibrations in 
the pressure suppression system of a boiling water reactor. 

1. INTRODUCTION AND BASIC CONCEPT 

Comprehensive stress analyses of technical systems with high damage potential, 
such as nuclear reactors, usually require detailed studies of their dynamic behavior. 
The analyses are rather complex, especially when structural members are surrounded 
by fluid. The solution of structural dynamics requires knowledge about the fluid 
dynamic loading but, at the same time, Auid dynamics depends appreciably on the 
transient deformations of those structural parts which are wetted by the fluid. Thus, 
a coupled problem in fluid and structural dynamics must be solved. 

To describe the fluid dynamics which takes part in the transient process a singularity 
method was developed and is presented in Part I of this paper [l].l It is applicable 
especially to highly transient internal flow problems with any three-dimensional 
geometry including walls wetted on both sides. The method is primarily based on a 
rectangular dipole element treatment developed recently for incompressible flows. 

l In the following, this paper is quoted as Part I. 
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%3 FLOW COUPLED WITH STRUCTURAL DYNAMICS 65 

The elements can be fitted to the fluid boundary or any appropriate enveloping surface 
The results can be used to obtain a linear relationship between the pressures and the 
normal accelerations at the fluid boundary. In other words, the three-dirne~si~~a~ 
fluid dynamics problem has been reduced to a two-dimensional problem wit 
-unknowns occurring only at the fluid boundary.2 

is a convenient form for introduction into the coupled problems conside 
in part of the paper. In the interface region the unknowns at the fluid bomb 
are identical with corresponding unknowns from structural dynamics. Thus, these 
unknowns may be eliminated and equations of motion for the coupled problem are 
obtained which are very similar to the equations of motion for structural dynamics 
without coupling. 

Consequently, for further treatment of the coupled problem the same metho 
may be used as are needed in pure structural dynamics. In this paper the eig 

the corresponding mode shapes (eigenvectors) are determined fnstr 
Then the problem is solved by modal superposition. Furthermore, based on the 
equation of motion for the coupled problem, the so-called added masses can be 
calculated which describe the inertia effect of the surrounding fluid. 

In the above procedure, both fluid and structural dynamic conditions are satisfied 
simultaneously. Therefore this method is sometimes referred to as ~‘sirn~i~a~e~~s 
coupling,” in contrast to the more common ‘6step-by~s~e~-~o~~l~ng,” where equi- 
librium between the fluid dynamic pressure and the structural load or ~orn~at~bi~~~~ 
between fluid flow and structural deformations is restored approximately snly after 
discrete time steps. 

In order to demonstrate the applicability of the simultaneous coupling II, ) the 
eigenfrequencies and mode shapes of a plane, flexible wall are calculated is a. 
part of a fluid-filled T-joint with rectangular cross sections. In a second example, 
vibrations of the spherical containment of a boiling water reactor are investigated 
A major part of this spherical containment forms the outer wah of a water pool 
which serves as a pressure suppression system. 

2. DEFINITION OF THE PROBLEM 

The structural dynamics part of the problem may be described by a. set of equations 
of motion. In particular: 

-The structure is represented by a finite number of points with one or more 
degrees of freedom. 

--For each degree of freedom either coupling with the adjacent fluid is re 
a given force is applied. 

2 For this reason, methods of this type are also called “boundary integral equation method (BE).” 
Another name is “panel method.” 



166 KRIEG ET AL. 

-The stiffness and mass matrices referring to the degrees of freedom are given. 
To obtain these matrices finite-element methods 0s other standard procedures in 
structural mechanics may be used. 

The fluid dynamics may be described by the singularity method discussed in Part I 
of this paper. In particular: 

-The fluid boundary is represented by a finite number of boundary points. 

-For each point, either coupling with the adjacent structure is required or 
pressures or normal accelerations are prescribed. 

-The coefficients and constants in the linear relations between pressures and 
normal accelerations of the above boundary points are known from the singularity 
method. 

For simplification of the numerical procedure the structural points in the coupling 
region (wetted region) must be identical with the corresponding fluid points. Further- 
more at each structural point in the coupling region the degree of freedom undergoing 
coupling must be perpendicular to the interface. 

The description of structural dynamics by linear equations of motion implies the 
following conditions: 

-The structural displacements must be small in comparison with other character- 
istic dimensions. 

-The structural material must be linearly elastic. However, an extension to include 
nonlinear material is possible on the basis of stepwise or iterative approximatiuns. 

The fluid dynamics assumptions are listed and discussed in Part I and lead to 
additional restrictions: 

-The dynamic pressures at boundaries with flexible structures, or at boundaries 
where pressures are prescribed, must be small in comparison with characteristic 
pressure differences in the system. 

--ISBody forces are not taken into account. However, surface waves due to gravity 
forces can be modeled by interpreting the free fluid surface as a fluid-structural inter- 
face. In this first-order theory the corresponding part of the stiffness matrix is a 
diagonal matrix where the elements are equal to the specific gravity of the fluid. The 
corresponding part of the mass matrix disappears. 

-The fluid viscosity must be negligible. 

-The fluid compressibility must be negligible and the fluid density must be 
constant. However, a rough simulation of the fluid compressibility is possible by 
introduction of some artificial compressible bodies within the fluid or by artificial 
increase of the flexibilities of the wetted structure. 
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3. COMPARISON WITH OTHER SOLUTION METHODS IN 
COUPLED FLUID-STRUCTURAL DYNAMICS 

Bearing in mind that solution methods and corresponding computer codes are well 
known in the separate fields of both fluid and structural dynamics, step- 
application of these methods seems to be the most convenient way ts deal w-it 
coupled problems. In the simplest case this means that for each time step the interface 
pressures or deformations are extrapolated, the fluid and structural dynamics codes 
check whether the extrapolated values satisfy the interface condi s and an iterative 
improvement is made, if necessary. Solution procedures of 
usually including very sophisticated features, have been describe 
Katz et aE. [2] and Dienes, Hirt, and Stein [3] calculated the deformations of the core 
barrel of a pressurized water reactor in the case of a sudden blowdown. Experimental 
verifications will be provided by full scale tests in the former HDR reactor [Lc]. In 
many publications the dynamics of the primary containment of a fast breeder reactor 
during a hypothetical core disruptive accident is investigated. These studies have been 
reviewed by Fistedis [5]. Another application is the calculation of the deformat~oi~s 
f a fluid container under seismic motions by Citerley, Gibson, and Ball [6]. Finally, 
ark, Felippa, and DeRuntz [7] presented a more general study of the step-by-step 

method or, in their words, of the staggered solution strategy, re~ornrnel~d~~g a 
pressure-integral extrapolation form giving optimum stability. 

In highly transient cases where an explicit integration scheme is advantageous for 
fluid and structural dynamics, the step-by-step method is inherent in the scheme. 
However, for dynamic problems not confined to extremely short durations, explicit 
integration schemes as well as step-by-step coupling can require such a large number 
of time steps that these methods become inappropriate. In those cases the unknown 
interface conditions should be eliminated, leaving a set of equations which allows for 
simultaneous satisfaction of the fluid and structural dynamics conditions. This was 
done by Schumann [S], Au-Yang [9], Horvay and Bowers [IO], and Chen and 

erg [I I] for coaxial cylindrical shells (such as reactor pressure vessel and core 
submerged in fluid, and by Krajcinovic [12] and by Housener and 

for other axisymmetric geometries, where Fourier expansions could be appl 
of those papers came to the conclusion that neglecting the compressibility of water 
has only a small influence on the calculated shell deformations. 

Application to three-dimensional problems was made by Chung and Wus 
and by Khabbaz [15] in space vehicle design; as in this paper, the degrees of freedom 
were reduced to those belonging to the shell and fluid boundaries. For the fluid 
dynamic part, Khabbaz also employed a singularity method which is similar to that 
used in this paper. Basic differences concern the types of singular 

s, respectively) and their arrangement (panels). Bedrosian and 
rger ]17] solved three-dimensional problems in submarine des 

the infinite fluid region to a finite domain. For other problems with finite fluid fields 
Zienkiewicz and Bettess [IX] applied both a combined method with finite eiiements 
(in the close neighborhood) and singularities (in the far region) as well as an infinite- 
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element method. Bonnemaire and Berhault [19] used singularity methods for fluid 
sloshing problems. 

A very extensive collection of different types of coupled problems in fluid structural 
dynamics and appropriate solution methods with emphasis on analytical or semi- 
analytical techniques is given by Mnev and Pertsev [20]. Solution methods emphasizing 
numerical techniques were published by Belytschko and Geers [21]. 

Finally, some applications to the dynamics of the pressure suppression system of 
boiling water reactors may be mentioned. The way of solution proposed by Schweiger 
and Mayr [22] and by Liang and Luk [23] is similar to the singularity method described 
here. Also IX Maggio et al. [24] deal with the fluid-structural coupling aspects of 
pressure suppression systems, however, under axisymmetric conditions. Class is 
tackling the same problem [25]. Finally, some preliminary results were published by 
the authors [26,27]. In almost all investigations of pressure suppression systems fluid 
compressibility was neglected. 

4. DESCRIPTION OF STRUCTURAL DYNAMICS BY MEANS OF 
STIFFNESS AND MASS MATRICES 

As mentioned in Section 2, the structure is represented by a finite number of points, 
each having one or more degrees of freedom. 

The degrees of freedom perpendicular to the fluid-structural interface may be 

numbered by 

The corresponding displacements 
may be the components of the vector 

The corresponding loads per unit area 
of the wetted structural parts may be 
the components of the vector 

II = 1, 2 ,..,, N1. 

9. 

-1 4. 

All other degrees of freedom may be 

numbered by 

The corresponding displacements 

n = 1, 2 ,..., N2. 

may be the components of the vector 

The corresponding loadings may be the 
components of the vector 

9. 

-2 4. 

Figure 1 characterizes a .coupled problem in fluid-structural dynamics, where the 
structure consists of a thin shell. In this case the vectors .?l and g1 describe the normal 
displacements and loadings of the wetted shell region (Fig. 2a). The vectors gz and g2 
describe the tangential displacements and loadings in the wetted region as well as all 
displacements and loadings in the unwetted region (Fig. 2b). 
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FIG. 1. Coupled problem in fluid shell dynamics. 

S’ 
-1 
9 

FIG. 2. (a) Structural degrees of freedom coupled with fluid dynamics. (b) Structural degree 
of freedom independent of fluid dynamics. 

itb g1 and s2 as the second time derivatives of 3 and S2 the equations of 
read: 

2Pp.*., B22 are submatrices of the stiffness matrix 3 and the mass matrix B of the wbok 
structure. The integers N1 and N2 denote the matrix dimensions. 

5SI/34/2-3 
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N1 N2 N1 N2 
-- -- ,- - -I_ - - - -, 

The matrices A’ and B may be obtained from finite-element calculations, for instance, 
or from other standard methods in structural dynamics. Usually A and .8 are 
symmetric. 

With appropriate initial conditions, Eqs. (4.1) would provide unique solutions for 
the structural displacements P and S2, if the load vectors p1 and Lj2 were known. 
The load ql, however, is due to the wetted structural region and depends on the 
dynamics of the adjacent fluid field. But, at the same time, fluid dynamics is influenced 
by the structural displacements $ which describe the movements of parts of the fluid 
boundary. Consequently, the load vector g1 cannot be determined from fluid dynamics 
only. Thus, a coupled problem in fluid and structural dynamics must be solved. The 
load vector q2 is due to the unwetted structural region and is assumed to be given. 

5. DESCRIPTION OF FLUID DYNAMICS BY MEANS OF A SINGULARITY METHOD 

In order to solve the coupled problem in fluid-structural dynamics the unknown 
load vector q1 in the structural dynamics equation (4.1) will be replaced by an appro- 
priate relationship from fluid dynamics. This relationship must give the pressures at 
the fluid boundary (which define the load vector 43 as an explicit function of the 
movements of the fluid boundary (which is due to the structural displacements). 
Such a function can be obtained from the singularity method in Part I. 

In Part I the locations of the singularities as well as the form of the fluid boundary 
are described by geometric points j = 1, 2,..., J. The indicator ii2 identifies point j 
as either a control point (where pressure and acceleration will be calculated) or a 
boundary point with prescribed pressure or acceleration. 

For problems in coupled fluid-structural dynamics the indicator ij2 has an equiv- 
alent meaning: 

ij2 = 1: The points j represent those boundary regions which wet the flexible 
structure. This subset of boundary points may be 

nuembered by 
The corresponding normal accelerations 
may be the components of the vector 
The corresponding pressures may be 
the components of the vector 

m = 1, 2 ,..., M? 

2. 

-1 P- 
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ij2 = 2: The points j represent boundary regions with prescribed normal accel- 
erations ajb. (A particular case is a rigid boundary region with ajb = 0.) T 

oundary points may be 

numbered by 

The given normal accelerations ajb 
may be the components of the vector 

The corresponding pressures may be 
the components of the vector 

m = 1, I&..., A@. 

a”. 

-2 P- 

ij2 = 3: The points j represent boundary regions with prescribed pressures -P,.“~ 
(A particular case is a free fluid surface with Pjb = const). This subset of boundary 
points may be 

numbered by 

The corresponding normal accelerations 
may be the components of the vector 

The given pressures Pjb may be the 
components of the vector 

m = 1, 2,..., M3. 

2. 

-3 P. 

As an example, the coupled problem of,Fig. 1 is 
regions of the fluid boundary are shown ip Fig. 3. 
flexible shell, in region 2 it is rigid or the normal a 
region 3 it is a free fluid surface. 

Bwndary Region 3 

a3 
-3 p Igivenl 

Boundary Region 1 
5’ 

-1 
P 

FIG. 3. Boundary regions of the fluid, coupled with shell (I), given acceleration (21, free fluid 
surface (3). 
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In Part I, Eqs. (8.1) represent the relationship between normal accelerations and 
pressures at the fluid boundary. The equivalent relations needed for solution of the 
coupled problem and written in vector notations are 

Here, X is an auxiliary vector. Its components are the function values X, , k = 1, 
2 ,..., K, introduced in Part I. For a unique solution of the problem the number K 
must be equal to the sum of the specified boundary points. 

I----I 
x,-j x / K; I K=M1+MZ-+W. 

I---, 

The matrices (?I, 8l, c2, B3 and the vectors T1, @, y2, s3 are obtained from the 
coefficients C$ , C$ and the terms Bf, Bjp in Section 8 of Part I: 

For if2 = 1: 

For ij2 = 2: 

For ii2 = 3: 

I c& -+ 1 (52 y2 / 
‘I 

M2. 

I--------l’ 
,- - _I’ 

cj4, --f I D’3 11 M3 -Bjp -+ j s3 / 
I 

M3. 

The unknowns of Eqs. (5.1) are the vectors 3 and j9 (which describe the normal 
acceleration and the pressure at the boundary with the flexible structure) and the 
auxiliary vector 8. The vector 8 must be eliminated in order to obtain the required 
relationship, i.e., p1 as an explicit function of 3 only. 

X is obtained from the second, third, and fourth equations of (5.1) by taking the 
matrix 

K 

M1+M2+M3=K, 
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inverting it 

and splitting it3 

yielding 
x = fj*yp1+ 81) + C*2(52 + y2)+ D5*3@3 + 83) (52) 

Then x is substituted in the first equation of (5.1). After some rearrangement one 
obtains 

2" -(Clb*l)j=p = ++ ~l[pp+ f7*2(5z + 72) + jp3(Ij3 + S")]. (5.3) 

Equation (5.3) is the required function due to fluid dynamics. The unknown vectors 
CT and p’ describe the normal acceleration and the pressure of those parts of the fluid 

oundary formed by the flexible structure. All other quantities in Eq. (5.3) are known. 

6. COUPLING BETWEEN FLUID AND STRUCTURAL 

Before substituting the load vector q1 in the structural dynamics equation (4~1) 
by using the fluid dynamics equation (5.3) the equilibrium and compatibility con- 
ditions at the fluid-structure interface must be formulated. 

It is required that the degrees of freedom describing the wetted region of the 
structure relate to geometric points which are identical with those points ~~~rese~~t~~~ 
the adjacent fluid boundary. (In cases where the structure is modeled by thin shells, 
the distance of half the shell thickness between the structural points located at the 
middle surface of the shell and the corresponding fluid boundary points will be 
neglected.) In other words, the points m = 1, Z,..., W must be identical with the 
points y1 c= 1, 2 ,..., W, which means 

Ml = iv. 

Provided the positive normal accelerations of the fluid boundary are directed intc the 
fluid region, the equilibrium and compatibility conditions at the fluid-st~~~t~ra~ 
interface read 

jjl = -q1 and El = 3 (4.1) 

a In general E*l, ea2, z*3 are not the inverses of j?, p, 6”, respectively. 
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Now, in the fluid dynamics equation (5.3) the vectors Z1 and p1 can be replaced by the 
structural accelerations %I and the loads Ljl. The unknown loads $ in the structural 
dynamics equations (4.1) can then be eliminated. 

Finally, the following equations of motion for the coupled problem are obtained: 
-- 

(~,~,,,-,1) jl + (~lI)*qlz) p + (pl~*lp + q $ + (~l~*ljyz) $ 

= -71 + p[B*l& + c*y52 + 7") + B*s(p3 + 83)], (6.2) 
2219 + J22i2 + Jj21y1 + B22i2 = q2, 

J!? is the identity matrix. 

Equations (6.2) are of the same type as the structural dynamics equations (4.1) and the 
matrices governing the coupled problem have the same dimensions as the stiffness 
and mass matrices for structural dynamics. Only the symmetry of the matrices dis- 
appears for coupled problems. Together with appropriate initial conditions, Eqs. (6.2) 
yield unique solutions for the structural displacements 9 and S2. The other unknowns 
describing the coupled problem may now be obtained easily. Using the solutions Sl 
and S2, the first equation in (4.1) yields the loading g1 of the wetted structural parts. 
The auxiliary vector x can then be calculated with Eqs. (6.1) and (5.2), which allows 
the pressures and accelerations at any fluid point to be determined by means of 
Eqs. (7.2) given in Part I. 

For further treatment of the problem, Eqs. (6.2) may be rewritten in the following 
form: 

& + j?gi = jz 

with 
I----/ 

1 31 I Nl 
s = I---j I 

j S2 / N2 
I---, I 

(6.3) 

Nl N2 Nl N2 
/_-_-~--,-------/ ,-------- --I-- - - - - - -, 
/ clD*lAll / ,5lDi*1212 / 

G-' _,---~-~-~---~-_~~ 

/ clD*l& + B 1 clDHj712 [ 

a= /---------j-------I 

I 221 / 222 

I 
/ N2’ 

I-------I-------/ I I----_----,- ----- -iI 

I B21 I 822 j N2’ 

-------------_----_, 
i-:;l-~&$i& + c*Z(aZ + 72) + n,,(,, + 63)] 

F = [-----------I------ ---- -------- 
I -2 

I 
4 

,------------------------~---~ 
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the basis of Eqs. (6.2) the so-called added mass matrix e 
r&ion of the tist equation in (6.2) from the left-hand side wi 

&l$l + j&2 + [jp + ((ypl)--11 $ + pj2 = . . . I 

Comparison with the first equation in (4.1) shows that coupling with fluid 
can be described by introduction of the added mass matrix 

which increases the elements of the structural mass matrix &. 
Added masses are defined only for the degrees of freedom w 

However, in contrast to .IP, off-diagonal terms in general do not disappe 
transfer of prescribed forces or accelerations from the fluid to the structure, w 
described by the right-hand sides of Eqs. (6.19, is not included in the added mass 
concept. 

7. SOLUTION OF THE EQUATIONS OF MOTION FOR THE GXJPLED PROBLEM 

The equations of motion (6.3) form a coupled system of second-order ~ffe~eritia~ 
equations with respect to time. The number of equations is equal to the number of 
unknowns. Several methods of solution are available. Here the method of modal 
superposition will be used. 

The first step is to calculate 

fp inverse of B, 
r p-IQ, 
-I 
P EFlF. 

With this, multiplying Eq. (6.3) from the left-hand side by g-l yields 

The second step is to calculate: 

ii- Diagonal matrix of the eigenvalues of p (the eigenvahtes are 
the elements of the diagonal matrix il> 

zz 
Matrix of the eigenvectors of p (the eigenvectors are the 
columns of the matrix 6) 

6-1 Inverse of CD 4 

P “;-7’ 

* In structural dynamics without coupling the matrix F is usually symmetric. In this case, the 
transposed GT may be used instead of the inverse @-I. 
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Now replacing the unknown vector S by the vector 5 

,g Z c& , 

and multiplying Eq. (7.1) from the left-hand side by 6-l yields 

(7.2) 

f&y + g = p. (7.3) 

When the diagonal matrix 2 and the vectors 0 and j5 are replaced by their components 
h n, cr, , and pm the matrix equation (7.3) produces one second-order differential 
equation for each unknown 0,: 

kpn + 6, = p* ; n = 1, 2 ,..., iV1 + N2. (7.4) 

In general the right-hand sides pn are functions of time stemming from given accel- 
erations Z2, given fluid boundary pressures p3, given structural loadings q2, and given 
fluid sources (j9, 8l, p2, s3) which are also functions of time. 

Two basic cases will be investigated in some detail: 

(1) Initially, the system is at rest, i.e., o, = I+~ = 0 for t = 0. The right-hand side 
is 

pn = cos Bt for 0 < t < T 

Pn = 0 for T < t. 

D is the frequency of excitation. Q and T may be given. Then the solution of (7.4) 
yields for 0 < t < T 

cr ?a= w,2 1 Q2 (cos Qt - cos w,t) for 52 # w, 

(7.5) 
1 = - t . sin w,t 

2%a 
for 1;2 = w, 

with the eigenfrequency 

w - x1,12. n- 

If, on the right-hand side, cos Qnt is replaced by sin Qt, the solution of (7.4) reads 

1 CT, = ws2 - LP ( sin L2t - L? 
-- sin w,t ) for J2 # 0, 
WV2 

1 1 =- - 
( 2% wn 

sin w,t - t cos w,t 1 for Q = w, . 
(7.6) 

From Eqs. (7.5) and (7.6) it follows that, in general, the solution is aperiodic. Excep- 
tions are cases where the ratio a/ UJ, is a rational number. Resonance occurs for 
excitations with a frequency 9 which agrees with the eigenfrequency 0,. 
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(2) The system conditions are known for time T, i,e., o,(T) and 6,(T) are Volvo. 
The right-hand side vanishes. Then the solution of Eq. (7.4) for t 3 T is 

Gn = A, cos w,t + B, sin w,t (7.7) 

wit 

B, = a,(T) sin w,T + C+,(T) 6 CQS wnT, 

A, = a,(T) cos w,T - c&(T) 6 sin w,T. 

With these basic solutions the system response due to excitations occurring only 
within one time interval can be investigated. Let this time interval be 0 < t < T 
and represent the right-hand side p,(t) by a Fourier expansion with the frequencies 
52 = 24T, 2(277./T), 3(2rr/T),...; the system response may then be obtained as follows: 

uring the time interval 0 < t < T the solutions (7.5) and (7.6) for the differ~~t 
frequencies Q must be multiplied by the corresponding Fourier coefficients and then 
superimposed. For times t > T formulas (7.7) apply with the values o,(T) and en(T) 
due to the response obtained at the end of the preceding time interval. Once the 
components G%(t) are known the vector S of the structural displacements can be 
calculated by Eq. (7.2). In general, the structural displacements will be an aperiodic 
function of time. 

MPLEMENTATION OF THE COMPUTER PROGRAM SING-S 

A computer program SING-S has been written to perform the operations describe 
in the previous sections. SING-S is based on results from the modules SIDIAG and 
SIKQEF of the fluid dynamic program SING1 described in Part 1. As additional 
input the stiffness and mass matrices are necessary. 

SING-S consists of the following modules: 

SIELIM 

SIEIGN 

SIMOSU 

SIPLOT 

Preparation of the matrix F, inversion of P and 
splitting into W, p*2, b*s 

Calculation of the matrices (?, R and I” as well as 
the vectors ? and p’ 

Determination of the eigenvalues (diagonal matrix 2) 
and the eigenvectors (matrix @ 

Calculation of the vector 6 and modal superposition 
to obtain the displacement vector S 

Plot of the results 
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For examples 1 and 2 discussed in the next section the memory space and the 
CPU-time of SING-S are 

CPU time 
Memory space 

Example 1 Example 2 
(T-joint) (pressure suppression system) 

1 min 11 min 
250 kbytes 1600 kbytes 

9. APPLICATIONS 

In order to demonstrate the applicability of the method, basically the same examples 
as those presented in Part I were investigated with SING-S. 

In the first example, which is a T-joint with rectangular surfaces and cross sections, 
all the walls were assumed to be rigid and constant pressures were applied at cross 
sections 1 and 2 (see Fig. 12 in Part I). The only exception is the bottom wall, which 
is assumed to be a flexible plate simply supported at the rigid side walls. For plate 
dimensions 80 x 70 x 0.2 mm, a Young’s modulus of 2 x loll N/m2, and a material 
density of 7.85 x 10” kg/m3; the plate eigenfrequencies for an empty T-joint are 73.9, 
149.5, 389.7, 688.7, 794.7, 858.8 ,... Hz. The plate eigenfrequencies of the fluid-filled 
T-joint (fluid density, lo3 kg/m3) have been calculated with the code SING-S. They 

FIG. 4. Vibration modes of the flexible bottom plate of a T-joint with rectangular cross sections. 
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are 12.6: 45.2, 143.4, 209.1, 260.4, 331.9 ,... Hz. In both cases the stiffness and mass 
matrices were determined by a standard finite-element code. As expected for t 

where the flexible structure is a relatively thin plate, coupling wit 
s reduces the eigenfrequencies significantly. The vibration modes be 

to the four lowest eigenfrequencies are shown in Fig. 4. The deformations are sym- 
metrical about the center line and are plotted for half the plate only. 

FIG. 5. Sixty degree section of the water pool in a pressure suppression system of a boiling water 
reactor. 

0 

0 0.02 0.04 0.06 0.08 0.10 
time (seci 

FIG. 6. Steam bubble radius versus time during bubble collapse. 

In the second example, which is a 60” section of the pressure suppression system 
of a boiling water reactor, the geometry and the boundary discretizations in panels 
are the same as in Part I. In particular, no normal accelerations are allowed for the 
lateral, the cylindrical, and the conical surfaces. Only the spherical surface was 
formed by a flexible spherical shell simply supported along circles 7.5 m below and 
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7.2 m above the free fluid surface. The point source shown in Fig. 5 simulates a 
steam bubble collapse in the water pool. The initial bubble radius was assumed to be 
0.49 m. The bubble collapse, i.e., the decrease of the bubble radius versus time was 
modeled according to Class [28] and is shown in Fig. 6. From this curve the source 
intensity versus time was obtained. The eigenfrequencies of the spherical shell 
calculated without the added mass of the water pool are 46.7, 55.0, 57.9, 58.9, 59.2, 
60.5, 60.5, 61.0, 61.3, 61.8,... Hz. These values were obtained with a special code for 
thin, spherical shells, SPHERl, developed by GGller [27]. The application of a standard 
finite-element code was not satisfactory in this case with a shell thickness of 2 cm 
and a shell radius of 1350 cm. Also for analysis of the coupled problem with SING-S 
the required stiffness and mass matrices of the shell were obtained from SPHERl. 
The eigenfrequencies calculated with the added fluid mass of the water pool (fluid 
density 1O-3 kg/cm3) are 9.4, 13.0, 17.5, 17.8, 19.3, 21.4, 21.9, 24.4, 24.8, 25.0, 25.1, 
26.5, 27.9,... Hz. These values are close to the eignefrequencies measured during 
full scale experiments [29]. Again, taking into account fluid-structural coupling 
reduces the eigenfrequencies of the spherical shell considerably. Furthermore, it is 
noticeable that both with and without fluid-structural coupling the eigenfrequencies 

9.4 Hz 17.5 Hz 

FIG. 7. Vibration modes of the spherical shell coupled with the adjacent water pool of the 
pressure suppression system. 
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are very close together (while the corresponding vibration modes in general 
entirely different). Thus, the spherical shell reveals a strongly local behavior 
sigl~ifi~ant deformations occurring only in the loaded regions. The vibration modes 
belonging to the four lowest eigenfrequencies of the shell coupled with the a 
water pool are shown in Fig. 7 (only the wetted shell region is plotted). It is character- 
istic that the maxima occur close to the pool bottom where the influence due to the 
added fluid mass is more pronounced than in other regions. 0n the baiss of the 
prescribed point source simulating the bubble collapse (Fig. 6), the ~rne~de~nde~~ 
radial shell displacements were calculated by modal superposition. For points 1 to 6, 
these radial displacements are shown in Fig. 8 (points 1 to 4 are identified at Fig 5, 
points 5 and 6 relate to the right- and left-hand sides of the unwetted shell region 
approximately 6 m above the free fluid surface). It can be seen that, after the process 
of bubble collapse (which takes 0.1 set), the amplitudes of the radial displacements 
are roughly constant. Decreases due to damping (material damping in the shell, 
viscosity in the fluid) are not included. Comparing the results for different points 
shows that a time delay can be observed with increasing distance from the given 
source. This is an indication that local disturbances propagate with finite velocities 
in coupled systems, although fluid compressibility is neglected. 

m 

Pi ti 
: 0 0.2 0.4 0.G 0.8 1.0 1 0 0.2 0.4 0.G 0.8 1.0 

time (set) time ksec) 

FIG. 8. Radial shell displacements versus time for points 1 to 5 (for points I to 4, see Pig. 5; 
points 5 and 6 are located above the free fluid surface). 
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